Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Overlapped speech recognition from a jointly learned multi-channel neural speech extraction and representation (1910.13825v1)

Published 30 Oct 2019 in eess.AS

Abstract: We propose an end-to-end joint optimization framework of a multi-channel neural speech extraction and deep acoustic model without mel-filterbank (FBANK) extraction for overlapped speech recognition. First, based on a multi-channel convolutional TasNet with STFT kernel, we unify the multi-channel target speech enhancement front-end network and a convolutional, long short-term memory and fully connected deep neural network (CLDNN) based acoustic model (AM) with the FBANK extraction layer to build a hybrid neural network, which is thus jointly updated only by the recognition loss. The proposed framework achieves 28% word error rate reduction (WERR) over a separately optimized system on AISHELL-1 and shows consistent robustness to signal to interference ratio (SIR) and angle difference between overlapping speakers. Next, a further exploration shows that the speech recognition is improved with a simplified structure by replacing the FBANK extraction layer in the joint model with a learnable feature projection. Finally, we also perform the objective measurement of speech quality on the reconstructed waveform from the enhancement network in the joint model.

Summary

We haven't generated a summary for this paper yet.