Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flexible Graph Connectivity: Approximating Network Design Problems Between 1- and 2-connectivity (1910.13297v2)

Published 29 Oct 2019 in cs.DS and cs.DM

Abstract: Graph connectivity and network design problems are among the most fundamental problems in combinatorial optimization. The minimum spanning tree problem, the two edge-connected spanning subgraph problem (2-ECSS) and the tree augmentation problem (TAP) are all examples of fundamental well-studied network design tasks that postulate different initial states of the network and different assumptions on the reliability of network components. In this paper we motivate and study \emph{Flexible Graph Connectivity} (FGC), a problem that mixes together both the modeling power and the complexities of all aforementioned problems and more. In a nutshell, FGC asks to design a connected network, while allowing to specify different reliability levels for individual edges. While this non-uniform nature of the problem makes it appealing from the modeling perspective, it also renders most existing algorithmic tools for dealing with network design problems unfit for approximating FGC. In this paper we develop a general algorithmic approach for approximating FGC that yields approximation algorithms with ratios that are very close to the best known bounds for many special cases, such as 2-ECSS and TAP. Our algorithm and analysis combine various techniques including a weight-scaling algorithm, a charging argument that uses a variant of exchange bijections between spanning trees and a factor revealing min-max-min optimization problem.

Citations (14)

Summary

We haven't generated a summary for this paper yet.