Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DEPA: Self-Supervised Audio Embedding for Depression Detection (1910.13028v3)

Published 29 Oct 2019 in cs.HC, cs.SD, and eess.AS

Abstract: Depression detection research has increased over the last few decades, one major bottleneck of which is the limited data availability and representation learning. Recently, self-supervised learning has seen success in pretraining text embeddings and has been applied broadly on related tasks with sparse data, while pretrained audio embeddings based on self-supervised learning are rarely investigated. This paper proposes DEPA, a self-supervised, pretrained depression audio embedding method for depression detection. An encoder-decoder network is used to extract DEPA on in-domain depressed datasets (DAIC and MDD) and out-domain (Switchboard, Alzheimer's) datasets. With DEPA as the audio embedding extracted at response-level, a significant performance gain is achieved on downstream tasks, evaluated on both sparse datasets like DAIC and large major depression disorder dataset (MDD). This paper not only exhibits itself as a novel embedding extracting method capturing response-level representation for depression detection but more significantly, is an exploration of self-supervised learning in a specific task within audio processing.

Citations (47)

Summary

We haven't generated a summary for this paper yet.