Introduction to local certification (1910.12747v5)
Abstract: A distributed graph algorithm is basically an algorithm where every node of a graph can look at its neighborhood at some distance in the graph and chose its output. As distributed environment are subject to faults, an important issue is to be able to check that the output is correct, or in general that the network is in proper configuration with respect to some predicate. One would like this checking to be very local, to avoid using too much resources. Unfortunately most predicates cannot be checked this way, and that is where certification comes into play. Local certification (also known as proof-labeling schemes, locally checkable proofs or distributed verification) consists in assigning labels to the nodes, that certify that the configuration is correct. There are several point of view on this topic: it can be seen as a part of self-stabilizing algorithms, as labeling problem, or as a non-deterministic distributed decision. This paper is an introduction to the domain of local certification, giving an overview of the history, the techniques and the current research directions.
- Memory-efficient self stabilizing protocols for general networks. In Distributed Algorithms, 4th International Workshop, WDAG ’90, volume 486, pages 15–28, 1990. doi:10.1007/3-540-54099-7_2.
- The local detection paradigm and its application to self-stabilization. Theoretical Computer Science, 186(1-2):199–229, 1997. doi:10.1016/S0304-3975(96)00286-1.
- A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms, 7(4):567–583, 1986. doi:10.1016/0196-6774(86)90019-2.
- Local decision and verification with bounded-size outputs. In 15th International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS 2013, pages 133–147, 2013. doi:10.1007/978-3-319-03089-0_10.
- Distributedly testing cycle-freeness. In 40th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2014, pages 15–28, 2014. doi:10.1007/978-3-319-12340-0_2.
- Computational Complexity - A Modern Approach. Cambridge University Press, 2009. ISBN 978-0-521-42426-4.
- Distributed program checking: a paradigm for building self-stabilizing distributed protocols (extended abstract). In 32nd Annual Symposium on Foundations of Computer Science, pages 258–267, 1991. doi:10.1109/SFCS.1991.185377.
- Self-stabilization by local checking and correction (extended abstract). In 32nd Symposium on Foundations of Computer Science, FOCS 1991, pages 268–277, 1991. doi:10.1109/SFCS.1991.185378.
- Self-stabilization by local checking and global reset (extended abstract). In Distributed Algorithms, 8th International Workshop, WDAG ’94, volume 857, pages 326–339, 1994. doi:10.1007/BFb0020443.
- Certification of compact low-stretch routing schemes. Comput. J., 62(5):730–746, 2019. doi:10.1093/comjnl/bxy089.
- What can be verified locally? Journal of Computer and System Sciences, 97:106–120, 2018. doi:10.1016/j.jcss.2018.05.004.
- Distributed Graph Coloring: Fundamentals and Recent Developments. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2013. ISBN 9781627050180. doi:10.2200/S00520ED1V01Y201307DCT011.
- Space-optimal time-efficient silent self-stabilizing constructions of constrained spanning trees. In 35th IEEE International Conference on Distributed Computing Systems, ICDCS 2015, pages 589–598, 2015. doi:10.1109/ICDCS.2015.66.
- On proof-labeling schemes versus silent self-stabilizing algorithms. In 16th International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS 2014, pages 18–32, 2014. doi:10.1007/978-3-319-11764-5_2.
- Silent MST approximation for tiny memory. In Stabilization, Safety, and Security of Distributed Systems - 22nd International Symposium, SSS 2020, volume 12514, pages 118–132, 2020. doi:10.1007/978-3-030-64348-5_10.
- Approximate proof-labeling schemes. Theor. Comput. Sci., 811:112–124, 2020. doi:10.1016/j.tcs.2018.08.020.
- Deterministic coin tossing with applications to optimal parallel list ranking. Inf. Control., 70(1):32–53, 1986. doi:10.1016/S0019-9958(86)80023-7.
- Trade-offs in distributed interactive proofs. In 33rd International Symposium on Distributed Computing, DISC 2019, pages 13:1–13:17, 2019. doi:10.4230/LIPIcs.DISC.2019.13.
- Edsger W Dijkstra. Self-stabilization in spite of distributed control. In Selected writings on computing: a personal perspective, pages 41–46. Springer, 1982.
- Shlomi Dolev. Self-Stabilization. MIT Press, 2000. ISBN 0-262-04178-2. URL http://www.cs.bgu.ac.il/%7Edolev/book/book.html.
- Memory requirements for silent stabilization. Acta Informatica, 36(6):447–462, 1999. doi:10.1007/s002360050180.
- Twenty-two new approximate proof labeling schemes. In 34th International Symposium on Distributed Computing, DISC 2020, volume 179, pages 20:1–20:14, 2020. doi:10.4230/LIPIcs.DISC.2020.20.
- Laurent Feuilloley. Note on distributed certification of minimum spanning trees, 2019. arXiv: 1909.07251.
- Laurent Feuilloley. Can we always build and certify at the same time? (Introduction). Discrete notes. https://discrete-notes.github.io/build-certify-1, 2020.
- Laurent Feuilloley. Diameter lower bound in local certification (1). Discrete notes. https://discrete-notes.github.io/diameter-lower-bound-1, 2021.
- Randomized local network computing. In 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, pages 340–349, 2015. doi:10.1145/2755573.2755596.
- Survey of distributed decision. Bulletin of the EATCS, 119, 2016. url: bulletin.eatcs.org link, arXiv: 1606.04434.
- Error-sensitive proof-labeling schemes. In 31st International Symposium on Distributed Computing, DISC 2017, pages 16:1–16:15, 2017. doi:LIPIcs.DISC.2017.16.
- Local verification of global proofs. In 32nd International Symposium on Distributed Computing, DISC 2018, pages 25:1–25:17, 2018. doi:10.4230/LIPIcs.DISC.2018.25.
- Redundancy in distributed proofs. Distributed Computing, 2020a. doi:10.1007/s00446-020-00386-z.
- Local certification of graphs with bounded genus, 2020b. arXiv: 2007.08084.
- A hierarchy of local decision. Theor. Comput. Sci., 856:51–67, 2021a. doi:10.1016/j.tcs.2020.12.017.
- Compact distributed certification of planar graphs. Algorithmica, pages 1–30, 2021b.
- Oracle size: a new measure of difficulty for communication tasks. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, PODC 2006, pages 179–187. ACM, 2006. doi:10.1145/1146381.1146410.
- Tree exploration with advice. Inf. Comput., 206(11):1276–1287, 2008. doi:10.1016/j.ic.2008.07.005.
- Distributed computing with advice: information sensitivity of graph coloring. Distributed Computing, 21(6):395–403, 2009. doi:10.1007/s00446-008-0076-y.
- On the impact of identifiers on local decision. In 16th International Conference Principles of Distributed Systems, OPODIS 2012, pages 224–238, 2012. doi:10.1007/978-3-642-35476-2_16.
- What can be decided locally without identifiers? In ACM Symposium on Principles of Distributed Computing (PODC), pages 157–165, 2013a. doi:10.1145/2484239.2484264.
- Towards a complexity theory for local distributed computing. Journal of the ACM, 60(5):35, 2013b. doi:10.1145/2499228.
- Randomized distributed decision. Distributed Computing, 27(6):419–434, 2014. doi:10.1007/s00446-014-0211-x.
- Node labels in local decision. Theortical Computer Science, 751:61–73, 2018. doi:10.1016/j.tcs.2017.01.011.
- Randomized proof-labeling schemes. Distributed Comput., 32(3):217–234, 2019. doi:10.1007/s00446-018-0340-8.
- A distributed algorithm for minimum-weight spanning trees. ACM Transactions on Programming Languages and Systems, 5(1):66–77, 1983. doi:10.1145/357195.357200.
- Parallel ((greek d)d+1)-coloring of constant-degree graphs. Inf. Process. Lett., 25(4):241–245, 1987. doi:10.1016/0020-0190(87)90169-4.
- Locally checkable proofs in distributed computing. Theory of Computing, 12(19):1–33, 2016. doi:10.4086/toc.2016.v012a019.
- Distributed algorithms 2020, 2020.
- Interactive distributed proofs. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC 2018, pages 255–264, 2018.
- Distributed verification of minimum spanning trees. Distributed Computing, 20(4):253–266, 2007. doi:10.1007/s00446-007-0025-1.
- Proof labeling schemes. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Distributed Computing, PODC 2005, pages 9–18, 2005. doi:10.1145/1073814.1073817.
- Proof labeling schemes. Distributed Computing, 22(4):215–233, 2010. doi:10.1007/s00446-010-0095-3.
- Fast and compact self-stabilizing verification, computation, and fault detection of an MST. Distributed Computing, 28(4):253–295, 2015. doi:10.1007/s00446-015-0242-y.
- Communication complexity. Cambridge University Press, 1997. ISBN 978-0-521-56067-2.
- Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193–201, 1992. doi:10.1137/0221015.
- Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput., 15(4):1036–1053, 1986. doi:10.1137/0215074.
- Shared vs private randomness in distributed interactive proofs. In 31st International Symposium on Algorithms and Computation, ISAAC 2020, volume 181 of LIPIcs, pages 51:1–51:13, 2020. doi:10.4230/LIPIcs.ISAAC.2020.51.
- What can be computed locally? SIAM Journal on Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.
- The power of distributed verifiers in interactive proofs. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages 1096–115, 2020. doi:10.1137/1.9781611975994.67.
- Otakar boruvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discret. Math., 233(1-3):3–36, 2001. doi:10.1016/S0012-365X(00)00224-7.
- Space-time tradeoffs for distributed verification. In Structural Information and Communication Complexity - 24th International Colloquium, SIROCCO 2017, pages 53–70, 2017. doi:10.1007/978-3-319-72050-0_4.
- Proof-labeling schemes: Broadcast, unicast and in between. In Stabilization, Safety, and Security of Distributed Systems - 19th International Symposium, SSS 2017, pages 1–17, 2017. doi:10.1007/978-3-319-69084-1_1.
- David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.
- Fabian Reiter. Distributed automata and logic. PhD thesis, University Paris Diderot, 2017. arXiv: 1805.06238.
- Jukka Suomela. Landscape of locality (invited talk). In 17th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2020, volume 162, page 2:1, 2020. doi:10.4230/LIPIcs.SWAT.2020.2.