Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hodge-to-de Rham degeneration for stacks (1910.12665v2)

Published 28 Oct 2019 in math.AG, math.NT, and math.RT

Abstract: We introduce a notion of a Hodge-proper stack and extend the method of Deligne-Illusie to prove the Hodge-to-de Rham degeneration in this setting. In order to reduce the statement in characteristic $0$ to characteristic $p$, we need to find a good integral model of a stack (a so-called spreading), which, unlike in the case of schemes, need not to exist in general. To address this problem we investigate the property of spreadability in more detail by generalizing standard spreading out results for schemes to higher Artin stacks and showing that all proper and some global quotient stacks are Hodge-properly spreadable. As a corollary we deduce a (non-canonical) Hodge decomposition of the equivariant cohomology for certain classes of varieties with an algebraic group action.

Summary

We haven't generated a summary for this paper yet.