Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling the stochasticity of high-redshift halo bias (1910.12452v1)

Published 28 Oct 2019 in astro-ph.CO

Abstract: A very large dynamic range with simultaneous capture of both large- and small-scales in the simulations of cosmic structures is required for correct modelling of many cosmological phenomena, particularly at high redshift. This is not always available, or when it is, it makes such simulations very expensive. We present a novel sub-grid method for modelling low-mass ($105\,M_\odot\leq M_{\rm halo}\leq 109\,M_\odot$) haloes, which are otherwise unresolved in large-volume cosmological simulations limited in numerical resolution. In addition to the deterministic halo bias that captures the average property, we model its stochasticity that is correlated in time. We find that the instantaneous binned distribution of the number of haloes is well approximated by a log-normal distribution, with overall amplitude modulated by this "temporal correlation bias". The robustness of our new scheme is tested against various statistical measures, and we find that temporally correlated stochasticity generates mock halo data that is significantly more reliable than that from temporally uncorrelated stochasticity. Our method can be applied for simulating processes that depend on both the small- and large-scale structures, especially for those that are sensitive to the evolution history of structure formation such as the process of cosmic reionization. As a sample application, we generate a mock distribution of medium-mass ($ 10{8} \leq M/M_{\odot} \leq 10{9}$) haloes inside a 500 Mpc$\,h{-1}$, $3003$ grid simulation box. This mock halo catalogue bears a reasonable statistical agreement with a halo catalogue from numerically-resolved haloes in a smaller box, and therefore will allow a very self-consistent sets of cosmic reionization simulations in a box large enough to generate statistically reliable data.

Summary

We haven't generated a summary for this paper yet.