Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning audio representations via phase prediction (1910.11910v1)

Published 25 Oct 2019 in eess.AS, cs.LG, and cs.SD

Abstract: We learn audio representations by solving a novel self-supervised learning task, which consists of predicting the phase of the short-time Fourier transform from its magnitude. A convolutional encoder is used to map the magnitude spectrum of the input waveform to a lower dimensional embedding. A convolutional decoder is then used to predict the instantaneous frequency (i.e., the temporal rate of change of the phase) from such embedding. To evaluate the quality of the learned representations, we evaluate how they transfer to a wide variety of downstream audio tasks. Our experiments reveal that the phase prediction task leads to representations that generalize across different tasks, partially bridging the gap with fully-supervised models. In addition, we show that the predicted phase can be used as initialization of the Griffin-Lim algorithm, thus reducing the number of iterations needed to reconstruct the waveform in the time domain.

Citations (10)

Summary

We haven't generated a summary for this paper yet.