Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Diarization Robustness using Diversification, Randomization and the DOVER Algorithm (1910.11691v2)

Published 24 Oct 2019 in cs.CL, cs.SD, and eess.AS

Abstract: Speaker diarization based on bottom-up clustering of speech segments by acoustic similarity is often highly sensitive to the choice of hyperparameters, such as the initial number of clusters and feature weighting. Optimizing these hyperparameters is difficult and often not robust across different data sets. We recently proposed the DOVER algorithm for combining multiple diarization hypotheses by voting. Here we propose to mitigate the robustness problem in diarization by using DOVER to average across different parameter choices. We also investigate the combination of diverse outputs obtained by following different merge choices pseudo-randomly in the course of clustering, thereby mitigating the greediness of best-first clustering. We show on two conference meeting data sets drawn from NIST evaluations that the proposed methods indeed yield more robust, and in several cases overall improved, results.

Summary

We haven't generated a summary for this paper yet.