Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting video sequences for unsupervised disentangling in generative adversarial networks (1910.11104v1)

Published 16 Oct 2019 in cs.CV, cs.LG, and stat.ML

Abstract: In this work we present an adversarial training algorithm that exploits correlations in video to learn --without supervision-- an image generator model with a disentangled latent space. The proposed methodology requires only a few modifications to the standard algorithm of Generative Adversarial Networks (GAN) and involves training with sets of frames taken from short videos. We train our model over two datasets of face-centered videos which present different people speaking or moving the head: VidTIMIT and YouTube Faces datasets. We found that our proposal allows us to split the generator latent space into two subspaces. One of them controls content attributes, those that do not change along short video sequences. For the considered datasets, this is the identity of the generated face. The other subspace controls motion attributes, those attributes that are observed to change along short videos. We observed that these motion attributes are face expressions, head orientation, lips and eyes movement. The presented experiments provide quantitative and qualitative evidence supporting that the proposed methodology induces a disentangling of this two kinds of attributes in the latent space.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Facundo Tuesca (1 paper)
  2. Lucas C. Uzal (3 papers)

Summary

We haven't generated a summary for this paper yet.