Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards DeepSpray: Using Convolutional Neural Network to post-process Shadowgraphy Images of Liquid Atomization (1910.11073v1)

Published 11 Oct 2019 in cs.CV and physics.data-an

Abstract: This technical report investigates the potential of Convolutional Neural Networks to post-process images from primary atomization. Three tasks are investigated. First, the detection and segmentation of liquid droplets in degraded optical conditions. Second, the detection of overlapping ellipses and the prediction of their geometrical characteristics. This task corresponds to extrapolate the hidden contour of an ellipse with reduced visual information. Third, several features of the liquid surface during primary breakup (ligaments, bags, rims) are manually annotated on 15 experimental images. The detector is trained on this minimal database using simple data augmentation and then applied to other images from numerical simulation and from other experiment. In these three tasks, models from the literature based on Convolutional Neural Networks showed very promising results, thus demonstrating the high potential of Deep Learning to post-process liquid atomization. The next step is to embed these models into a unified framework DeepSpray.

Citations (5)

Summary

We haven't generated a summary for this paper yet.