Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low Shot Learning with Untrained Neural Networks for Imaging Inverse Problems (1910.10797v1)

Published 23 Oct 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Employing deep neural networks as natural image priors to solve inverse problems either requires large amounts of data to sufficiently train expressive generative models or can succeed with no data via untrained neural networks. However, very few works have considered how to interpolate between these no- to high-data regimes. In particular, how can one use the availability of a small amount of data (even $5-25$ examples) to one's advantage in solving these inverse problems and can a system's performance increase as the amount of data increases as well? In this work, we consider solving linear inverse problems when given a small number of examples of images that are drawn from the same distribution as the image of interest. Comparing to untrained neural networks that use no data, we show how one can pre-train a neural network with a few given examples to improve reconstruction results in compressed sensing and semantic image recovery problems such as colorization. Our approach leads to improved reconstruction as the amount of available data increases and is on par with fully trained generative models, while requiring less than $1 \%$ of the data needed to train a generative model.

Citations (6)

Summary

We haven't generated a summary for this paper yet.