Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Power Flow Using Graph Neural Networks (1910.09658v1)

Published 21 Oct 2019 in eess.SY and cs.SY

Abstract: Optimal power flow (OPF) is one of the most important optimization problems in the energy industry. In its simplest form, OPF attempts to find the optimal power that the generators within the grid have to produce to satisfy a given demand. Optimality is measured with respect to the cost that each generator incurs in producing this power. The OPF problem is non-convex due to the sinusoidal nature of electrical generation and thus is difficult to solve. Using small angle approximations leads to a convex problem known as DC OPF, but this approximation is no longer valid when power grids are heavily loaded. Many approximate solutions have been since put forward, but these do not scale to large power networks. In this paper, we propose using graph neural networks (which are localized, scalable parametrizations of network data) trained under the imitation learning framework to approximate a given optimal solution. While the optimal solution is costly, it is only required to be computed for network states in the training set. During test time, the GNN adequately learns how to compute the OPF solution. Numerical experiments are run on the IEEE-30 and IEEE-118 test cases.

Citations (115)

Summary

We haven't generated a summary for this paper yet.