Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the space-time expressivity of ResNets (1910.09599v4)

Published 21 Oct 2019 in cs.LG, cs.NA, cs.NE, math.NA, and stat.ML

Abstract: Residual networks (ResNets) are a deep learning architecture that substantially improved the state of the art performance in certain supervised learning tasks. Since then, they have received continuously growing attention. ResNets have a recursive structure $x_{k+1} = x_k + R_k(x_k)$ where $R_k$ is a neural network called a residual block. This structure can be seen as the Euler discretisation of an associated ordinary differential equation (ODE) which is called a neural ODE. Recently, ResNets were proposed as the space-time approximation of ODEs which are not of this neural type. To elaborate this connection we show that by increasing the number of residual blocks as well as their expressivity the solution of an arbitrary ODE can be approximated in space and time simultaneously by deep ReLU ResNets. Further, we derive estimates on the complexity of the residual blocks required to obtain a prescribed accuracy under certain regularity assumptions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.