Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Distributed Stochastic Gradient Algorithms for Global Optimization (1910.09587v2)

Published 21 Oct 2019 in math.OC and cs.MA

Abstract: The paper considers the problem of network-based computation of global minima in smooth nonconvex optimization problems. It is known that distributed gradient-descent-type algorithms can achieve convergence to the set of global minima by adding slowly decaying Gaussian noise in order escape local minima. However, the technical assumptions under which convergence is known to occur can be restrictive in practice. In particular, in known convergence results, the local objective functions possessed by agents are required to satisfy a highly restrictive bounded-gradient-dissimilarity condition. The paper demonstrates convergence to the set of global minima while relaxing this key assumption.

Citations (8)

Summary

We haven't generated a summary for this paper yet.