Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

SANet:Superpixel Attention Network for Skin Lesion Attributes Detection (1910.08995v1)

Published 20 Oct 2019 in eess.IV, cs.CV, and q-bio.TO

Abstract: The accurate detection of lesion attributes is meaningful for both the computeraid diagnosis system and dermatologists decisions. However, unlike lesion segmentation and melenoma classification, there are few deep learning methods and literatures focusing on this task. Currently, the lesion attribute detection still remains challenging due to the extremely unbalanced class distribution and insufficient samples, as well as large intraclass and low interclass variations. To solve these problems, we propose a deep learning framework named superpixel attention network (SANet). Firstly, we segment input images into small regions and shuffle the obtained regions by the random shuttle mechanism (RSM). Secondly, we apply the SANet to capture discriminative features and reconstruct input images. Specifically, SANet contains two sub modules: superpixel average pooling and superpixel at tention module. We introduce a superpixel average pooling to reformulate the superpixel classification problem as a superpixel segmentation problem and a SAMis utilized to focus on discriminative superpixel regions and feature channels. Finally, we design a novel but effective loss, namely global balancing loss to address the serious data imbalance in ISIC 2018 Task 2 lesion attributes detection dataset. The proposed method achieves quite good performance on the ISIC 2018 Task 2 challenge.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.