Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble learning based linear power flow (1910.08655v1)

Published 18 Oct 2019 in eess.SY, cs.LG, cs.SY, and stat.ML

Abstract: This paper develops an ensemble learning-based linearization approach for power flow, which differs from the network-parameter based direct current (DC) power flow or other extended versions of linearization. As a novel data-driven linearization through data mining, it firstly applies the polynomial regression (PR) as a basic learner to capture the linear relationships between the bus voltage as the independent variable and the active or reactive power as the dependent variable in rectangular coordinates. Then, gradient boosting (GB) and bagging as ensemble learning methods are introduced to combine all basic learners to boost the model performance. The fitted linear power flow model is also relaxed to compute the optimal power flow (OPF). The simulating results of standard IEEE cases indicate that (1) ensemble learning methods outperform PR and GB works better than bagging; (2) as for solving OPF, the data-driven model excels the DC model and the SDP relaxation in the computational accuracy, and works faster than ACOPF and SDPOPF.

Citations (6)

Summary

We haven't generated a summary for this paper yet.