Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anderson Acceleration of Proximal Gradient Methods (1910.08590v2)

Published 18 Oct 2019 in math.OC and cs.LG

Abstract: Anderson acceleration is a well-established and simple technique for speeding up fixed-point computations with countless applications. Previous studies of Anderson acceleration in optimization have only been able to provide convergence guarantees for unconstrained and smooth problems. This work introduces novel methods for adapting Anderson acceleration to (non-smooth and constrained) proximal gradient algorithms. Under some technical conditions, we extend the existing local convergence results of Anderson acceleration for smooth fixed-point mappings to the proposed scheme. We also prove analytically that it is not, in general, possible to guarantee global convergence of native Anderson acceleration. We therefore propose a simple scheme for stabilization that combines the global worst-case guarantees of proximal gradient methods with the local adaptation and practical speed-up of Anderson acceleration.

Citations (35)

Summary

We haven't generated a summary for this paper yet.