Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Proof complexity of systems of (non-deterministic) decision trees and branching programs (1910.08503v1)

Published 18 Oct 2019 in cs.CC, cs.LO, and math.LO

Abstract: This paper studies propositional proof systems in which lines are sequents of decision trees or branching programs - deterministic and nondeterministic. The systems LDT and LNDT are propositional proof systems in which lines represent deterministic or non-deterministic decision trees. Branching programs are modeled as decision dags. Adding extension to LDT and LNDT gives systems eLDT and eLNDT in which lines represent deterministic and non-deterministic branching programs, respectively. Deterministic and non-deterministic branching programs correspond to log-space (L) and nondeterministic log-space (NL). Thus the systems eLDT and eLNDT are propositional proof systems that reason with (nonuniform) L and NL properties. The main results of the paper are simulation and non-simulation results for tree-like and dag-like proofs in the systems LDT, LNDT, eLDT, and eLNDT. These systems are also compared with Frege systems, constantdepth Frege systems and extended Frege systems

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.