Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning for Paper Grammage Prediction Based on Sensor Measurements in Paper Mills (1910.06908v1)

Published 25 Sep 2019 in cs.LG

Abstract: Automation is at the core of modern industry. It aims to increase production rates, decrease production costs, and reduce human intervention in order to avoid human mistakes and time delays during manufacturing. On the other hand, human assistance is usually required to customize products and reconfigure control systems through a special process interface called Human Machine Interface (HMI). Machine Learning (ML) algorithms can effectively be used to resolve this tradeoff between full automation and human assistance.This paper provides an example of the industrial application of ML algorithms to help human operators save their mental effort and avoid time delays and unintended mistakes for the sake of high production rates. Based on real-time sensor measurements, several ML algorithms have been tried to classify paper rolls according to paper grammage in a white paper mill. The performance evaluation shows that the AdaBoost algorithm is the best ML algorithm for this application with classification accuracy (CA), precision, and recall of 97.1%. The generalization of the proposed approach for achieving cost-effective mills construction will be the subject of our future research.

Summary

We haven't generated a summary for this paper yet.