Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Target-Oriented Deformation of Visual-Semantic Embedding Space (1910.06514v1)

Published 15 Oct 2019 in cs.CV and cs.MM

Abstract: Multimodal embedding is a crucial research topic for cross-modal understanding, data mining, and translation. Many studies have attempted to extract representations from given entities and align them in a shared embedding space. However, because entities in different modalities exhibit different abstraction levels and modality-specific information, it is insufficient to embed related entities close to each other. In this study, we propose the Target-Oriented Deformation Network (TOD-Net), a novel module that continuously deforms the embedding space into a new space under a given condition, thereby adjusting similarities between entities. Unlike methods based on cross-modal attention, TOD-Net is a post-process applied to the embedding space learned by existing embedding systems and improves their performances of retrieval. In particular, when combined with cutting-edge models, TOD-Net gains the state-of-the-art cross-modal retrieval model associated with the MSCOCO dataset. Qualitative analysis reveals that TOD-Net successfully emphasizes entity-specific concepts and retrieves diverse targets via handling higher levels of diversity than existing models.

Citations (6)

Summary

We haven't generated a summary for this paper yet.