Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding the Curse of Horizon in Off-Policy Evaluation via Conditional Importance Sampling (1910.06508v2)

Published 15 Oct 2019 in cs.LG and stat.ML

Abstract: Off-policy policy estimators that use importance sampling (IS) can suffer from high variance in long-horizon domains, and there has been particular excitement over new IS methods that leverage the structure of Markov decision processes. We analyze the variance of the most popular approaches through the viewpoint of conditional Monte Carlo. Surprisingly, we find that in finite horizon MDPs there is no strict variance reduction of per-decision importance sampling or stationary importance sampling, comparing with vanilla importance sampling. We then provide sufficient conditions under which the per-decision or stationary estimators will provably reduce the variance over importance sampling with finite horizons. For the asymptotic (in terms of horizon $T$) case, we develop upper and lower bounds on the variance of those estimators which yields sufficient conditions under which there exists an exponential v.s. polynomial gap between the variance of importance sampling and that of the per-decision or stationary estimators. These results help advance our understanding of if and when new types of IS estimators will improve the accuracy of off-policy estimation.

Citations (42)

Summary

We haven't generated a summary for this paper yet.