Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Optimal Algorithm for Adversarial Bandits with Arbitrary Delays (1910.06054v2)

Published 14 Oct 2019 in cs.LG and stat.ML

Abstract: We propose a new algorithm for adversarial multi-armed bandits with unrestricted delays. The algorithm is based on a novel hybrid regularizer applied in the Follow the Regularized Leader (FTRL) framework. It achieves $\mathcal{O}(\sqrt{kn}+\sqrt{D\log(k)})$ regret guarantee, where $k$ is the number of arms, $n$ is the number of rounds, and $D$ is the total delay. The result matches the lower bound within constants and requires no prior knowledge of $n$ or $D$. Additionally, we propose a refined tuning of the algorithm, which achieves $\mathcal{O}(\sqrt{kn}+\min_{S}|S|+\sqrt{D_{\bar S}\log(k)})$ regret guarantee, where $S$ is a set of rounds excluded from delay counting, $\bar S = [n]\setminus S$ are the counted rounds, and $D_{\bar S}$ is the total delay in the counted rounds. If the delays are highly unbalanced, the latter regret guarantee can be significantly tighter than the former. The result requires no advance knowledge of the delays and resolves an open problem of Thune et al. (2019). The new FTRL algorithm and its refined tuning are anytime and require no doubling, which resolves another open problem of Thune et al. (2019).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Julian Zimmert (30 papers)
  2. Yevgeny Seldin (26 papers)
Citations (46)

Summary

We haven't generated a summary for this paper yet.