Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerated Structured Alternating Projections for Robust Spectrally Sparse Signal Recovery (1910.05859v3)

Published 13 Oct 2019 in cs.IT, cs.LG, eess.SP, math.IT, and math.OC

Abstract: Consider a spectrally sparse signal $\boldsymbol{x}$ that consists of $r$ complex sinusoids with or without damping. We study the robust recovery problem for the spectrally sparse signal under the fully observed setting, which is about recovering $\boldsymbol{x}$ and a sparse corruption vector $\boldsymbol{s}$ from their sum $\boldsymbol{z}=\boldsymbol{x}+\boldsymbol{s}$. In this paper, we exploit the low-rank property of the Hankel matrix formed by $\boldsymbol{x}$, and formulate the problem as the robust recovery of a corrupted low-rank Hankel matrix. We develop a highly efficient non-convex algorithm, coined Accelerated Structured Alternating Projections (ASAP). The high computational efficiency and low space complexity of ASAP are achieved by fast computations involving structured matrices, and a subspace projection method for accelerated low-rank approximation. Theoretical recovery guarantee with a linear convergence rate has been established for ASAP, under some mild assumptions on $\boldsymbol{x}$ and $\boldsymbol{s}$. Empirical performance comparisons on both synthetic and real-world data confirm the advantages of ASAP, in terms of computational efficiency and robustness aspects.

Citations (3)

Summary

We haven't generated a summary for this paper yet.