Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Fourier Sparsity Testing (1910.05686v1)

Published 13 Oct 2019 in cs.DS

Abstract: A function $f : \mathbb{F}_2n \to \mathbb{R}$ is $s$-sparse if it has at most $s$ non-zero Fourier coefficients. Motivated by applications to fast sparse Fourier transforms over $\mathbb{F}_2n$, we study efficient algorithms for the problem of approximating the $\ell_2$-distance from a given function to the closest $s$-sparse function. While previous works (e.g., Gopalan et al. SICOMP 2011) study the problem of distinguishing $s$-sparse functions from those that are far from $s$-sparse under Hamming distance, to the best of our knowledge no prior work has explicitly focused on the more general problem of distance estimation in the $\ell_2$ setting, which is particularly well-motivated for noisy Fourier spectra. Given the focus on efficiency, our main result is an algorithm that solves this problem with query complexity $\mathcal{O}(s)$ for constant accuracy and error parameters, which is only quadratically worse than applicable lower bounds.

Citations (2)

Summary

We haven't generated a summary for this paper yet.