Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Residual Encoder-Decoder Network for Deep Subspace Clustering (1910.05569v1)

Published 12 Oct 2019 in cs.LG and stat.ML

Abstract: Subspace clustering aims to cluster unlabeled data that lies in a union of low-dimensional linear subspaces. Deep subspace clustering approaches based on auto-encoders have become very popular to solve subspace clustering problems. However, the training of current deep methods converges slowly, which is much less efficient than traditional approaches. We propose a Residual Encoder-Decoder network for deep Subspace Clustering (RED-SC), which symmetrically links convolutional and deconvolutional layers with skip-layer connections, with which the training converges much faster. We use a self-expressive layer to generate more accurate linear representation coefficients through different latent representations from multiple latent spaces. Experiments show the superiority of RED-SC in training efficiency and clustering accuracy. Moreover, we are the first one to apply residual encoder-decoder on unsupervised learning tasks.

Citations (12)

Summary

We haven't generated a summary for this paper yet.