Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
Gemini 2.5 Pro Premium
51 tokens/sec
GPT-5 Medium
34 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
115 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
148 tokens/sec
2000 character limit reached

Quantification of the Leakage in Federated Learning (1910.05467v2)

Published 12 Oct 2019 in cs.CR

Abstract: With the growing emphasis on users' privacy, federated learning has become more and more popular. Many architectures have been raised for a better security. Most architecture work on the assumption that data's gradient could not leak information. However, some work, recently, has shown such gradients may lead to leakage of the training data. In this paper, we discuss the leakage based on a federated approximated logistic regression model and show that such gradient's leakage could leak the complete training data if all elements of the inputs are either 0 or 1.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.