Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acquisition of Inflectional Morphology in Artificial Neural Networks With Prior Knowledge (1910.05456v1)

Published 12 Oct 2019 in cs.CL

Abstract: How does knowledge of one language's morphology influence learning of inflection rules in a second one? In order to investigate this question in artificial neural network models, we perform experiments with a sequence-to-sequence architecture, which we train on different combinations of eight source and three target languages. A detailed analysis of the model outputs suggests the following conclusions: (i) if source and target language are closely related, acquisition of the target language's inflectional morphology constitutes an easier task for the model; (ii) knowledge of a prefixing (resp. suffixing) language makes acquisition of a suffixing (resp. prefixing) language's morphology more challenging; and (iii) surprisingly, a source language which exhibits an agglutinative morphology simplifies learning of a second language's inflectional morphology, independent of their relatedness.

Citations (5)

Summary

We haven't generated a summary for this paper yet.