Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Likelihood-based Inference for Partially Observed Epidemics on Dynamic Networks (1910.04221v2)

Published 9 Oct 2019 in stat.ME, physics.soc-ph, and q-bio.PE

Abstract: We propose a generative model and an inference scheme for epidemic processes on dynamic, adaptive contact networks. Network evolution is formulated as a link-Markovian process, which is then coupled to an individual-level stochastic SIR model, in order to describe the interplay between epidemic dynamics on a network and network link changes. A Markov chain Monte Carlo framework is developed for likelihood-based inference from partial epidemic observations, with a novel data augmentation algorithm specifically designed to deal with missing individual recovery times under the dynamic network setting. Through a series of simulation experiments, we demonstrate the validity and flexibility of the model as well as the efficacy and efficiency of the data augmentation inference scheme. The model is also applied to a recent real-world dataset on influenza-like-illness transmission with high-resolution social contact tracking records.

Summary

We haven't generated a summary for this paper yet.