Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Deciding Differential Privacy for Programs with Finite Inputs and Outputs (1910.04137v2)

Published 9 Oct 2019 in cs.CR, cs.LO, and cs.PL

Abstract: Differential privacy is a de facto standard for statistical computations over databases that contain private data. The strength of differential privacy lies in a rigorous mathematical definition that guarantees individual privacy and yet allows for accurate statistical results. Thanks to its mathematical definition, differential privacy is also a natural target for formal analysis. A broad line of work uses logical methods for proving privacy. However, these methods are not complete, and only partially automated. A recent and complementary line of work uses statistical methods for finding privacy violations. However, the methods only provide statistical guarantees (but no proofs). We propose the first decision procedure for checking the differential privacy of a non-trivial class of probabilistic computations. Our procedure takes as input a program P parametrized by a privacy budget $\epsilon$, and either proves differential privacy for all possible values of $\epsilon$ or generates a counterexample. In addition, our procedure applies both to $\epsilon$-differential privacy and $(\epsilon,\delta)$-differential privacy. Technically, the decision procedure is based on a novel and judicious encoding of the semantics of programs in our class into a decidable fragment of the first-order theory of the reals with exponentiation. We implement our procedure and use it for (dis)proving privacy bounds for many well-known examples, including randomized response, histogram, report noisy max and sparse vector.

Citations (22)

Summary

We haven't generated a summary for this paper yet.