Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Multidisciplinary Design and Control of Hopping Robots for Exploration of Extreme Environments on the Moon and Mars (1910.03827v1)

Published 9 Oct 2019 in cs.RO, astro-ph.IM, and cs.AI

Abstract: The next frontier in solar system exploration will be missions targeting extreme and rugged environments such as caves, canyons, cliffs and crater rims of the Moon, Mars and icy moons. These environments are time capsules into early formation of the solar system and will provide vital clues of how our early solar system gave way to the current planets and moons. These sites will also provide vital clues to the past and present habitability of these environments. Current landers and rovers are unable to access these areas of high interest due to limitations in precision landing techniques, need for large and sophisticated science instruments and a mission assurance and operations culture where risks are minimized at all costs. Our past work has shown the advantages of using multiple spherical hopping robots called SphereX for exploring these extreme environments. Our previous work was based on performing exploration with a human-designed baseline design of a SphereX robot. However, the design of SphereX is a complex task that involves a large number of design variables and multiple engineering disciplines. In this work we propose to use Automated Multidisciplinary Design and Control Optimization (AMDCO) techniques to find near optimal design solutions in terms of mass, volume, power, and control for SphereX for different mission scenarios.

Citations (6)

Summary

We haven't generated a summary for this paper yet.