2000 character limit reached
Perverse $\mathbb{F}_p$-sheaves on the affine Grassmannian (1910.03377v4)
Published 8 Oct 2019 in math.AG
Abstract: For a reductive group over an algebraically closed field of characteristic $p > 0$ we construct the abelian category of perverse $\mathbb{F}_p$-sheaves on the affine Grassmannian that are equivariant with respect to the action of the positive loop group. We show this is a symmetric monoidal category, and then we apply a Tannakian formalism to show this category is equivalent to the category of representations of a certain affine monoid scheme. We also show that our work provides a geometrization of the inverse of the mod $p$ Satake isomorphism. Along the way we prove that affine Schubert varieties are globally $F$-regular and we apply Frobenius splitting techniques to the theory of perverse $\mathbb{F}_p$-sheaves.