Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SesameBERT: Attention for Anywhere (1910.03176v1)

Published 8 Oct 2019 in cs.CL and cs.LG

Abstract: Fine-tuning with pre-trained models has achieved exceptional results for many language tasks. In this study, we focused on one such self-attention network model, namely BERT, which has performed well in terms of stacking layers across diverse language-understanding benchmarks. However, in many downstream tasks, information between layers is ignored by BERT for fine-tuning. In addition, although self-attention networks are well-known for their ability to capture global dependencies, room for improvement remains in terms of emphasizing the importance of local contexts. In light of these advantages and disadvantages, this paper proposes SesameBERT, a generalized fine-tuning method that (1) enables the extraction of global information among all layers through Squeeze and Excitation and (2) enriches local information by capturing neighboring contexts via Gaussian blurring. Furthermore, we demonstrated the effectiveness of our approach in the HANS dataset, which is used to determine whether models have adopted shallow heuristics instead of learning underlying generalizations. The experiments revealed that SesameBERT outperformed BERT with respect to GLUE benchmark and the HANS evaluation set.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ta-Chun Su (2 papers)
  2. Hsiang-Chih Cheng (1 paper)
Citations (7)

Summary

We haven't generated a summary for this paper yet.