Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Straight-Through Estimator as Projected Wasserstein Gradient Flow (1910.02176v1)

Published 5 Oct 2019 in cs.LG and stat.ML

Abstract: The Straight-Through (ST) estimator is a widely used technique for back-propagating gradients through discrete random variables. However, this effective method lacks theoretical justification. In this paper, we show that ST can be interpreted as the simulation of the projected Wasserstein gradient flow (pWGF). Based on this understanding, a theoretical foundation is established to justify the convergence properties of ST. Further, another pWGF estimator variant is proposed, which exhibits superior performance on distributions with infinite support,e.g., Poisson distributions. Empirically, we show that ST and our proposed estimator, while applied to different types of discrete structures (including both Bernoulli and Poisson latent variables), exhibit comparable or even better performances relative to other state-of-the-art methods. Our results uncover the origin of the widespread adoption of the ST estimator and represent a helpful step towards exploring alternative gradient estimators for discrete variables.

Citations (14)

Summary

We haven't generated a summary for this paper yet.