Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 113 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Non-perturbative Quantum Field Theory and the Geometry of Functional Spaces (1910.01841v3)

Published 4 Oct 2019 in hep-th, gr-qc, math-ph, and math.MP

Abstract: In this paper we construct a non-commutative geometry over a configuration space of gauge connections and show that it gives rise to a candidate for an interacting, non-perturbative quantum gauge theory coupled to a fermionic field on a curved background. The non-commutative geometry is given by an infinite-dimensional Bott-Dirac type operator, whose square gives the Hamilton operator, and which interacts with an algebra generated by holonomy-diffeomorphisms. The Bott-Dirac operator and the associated Hilbert space relies on a metric on the configuration space of connections, which effectively works as a covariant ultra-violet regulator. We show that the construction coincides with perturbative quantum field theory in a local limit. Questions concerning Lorentz invariance and the fermionic sector as well as the issue of existence are left open.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.