Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Iterative Quadratic Method for General-Sum Differential Games with Feedback Linearizable Dynamics (1910.00681v2)

Published 1 Oct 2019 in eess.SY, cs.GT, cs.MA, cs.RO, and cs.SY

Abstract: Iterative linear-quadratic (ILQ) methods are widely used in the nonlinear optimal control community. Recent work has applied similar methodology in the setting of multiplayer general-sum differential games. Here, ILQ methods are capable of finding local equilibria in interactive motion planning problems in real-time. As in most iterative procedures, however, this approach can be sensitive to initial conditions and hyperparameter choices, which can result in poor computational performance or even unsafe trajectories. In this paper, we focus our attention on a broad class of dynamical systems which are feedback linearizable, and exploit this structure to improve both algorithmic reliability and runtime. We showcase our new algorithm in three distinct traffic scenarios, and observe that in practice our method converges significantly more often and more quickly than was possible without exploiting the feedback linearizable structure.

Citations (24)

Summary

We haven't generated a summary for this paper yet.