Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Metamorphic Testing with Contextual Bandits (1910.00262v3)

Published 1 Oct 2019 in cs.SE

Abstract: Metamorphic Testing is a software testing paradigm which aims at using necessary properties of a system-under-test, called metamorphic relations, to either check its expected outputs, or to generate new test cases. Metamorphic Testing has been successful to test programs for which a full oracle is not available or to test programs for which there are uncertainties on expected outputs such as learning systems. In this article, we propose Adaptive Metamorphic Testing as a generalization of a simple yet powerful reinforcement learning technique, namely contextual bandits, to select one of the multiple metamorphic relations available for a program. By using contextual bandits, Adaptive Metamorphic Testing learns which metamorphic relations are likely to transform a source test case, such that it has higher chance to discover faults. We present experimental results over two major case studies in machine learning, namely image classification and object detection, and identify weaknesses and robustness boundaries. Adaptive Metamorphic Testing efficiently identifies weaknesses of the tested systems in context of the source test case.

Citations (29)

Summary

We haven't generated a summary for this paper yet.