Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How To Catch A Lion In The Desert -- On The Solution Of The Coverage Directed Generation (CDG) Problem (1910.00170v1)

Published 1 Oct 2019 in math.OC, cs.SY, and eess.SY

Abstract: The testing and verification of a complex hardware or software system, such as modern integrated circuits (ICs) found in everything from smartphones to servers, can be a difficult process. One of the most difficult and time-consuming tasks a verification team faces is reaching coverage closure, or hitting all events in the coverage space. Coverage-directed-generation (CDG), or the automatic generation of tests that can hit hard-to-hit coverage events, and thus provide coverage closure, holds the potential to save verification teams significant simulation resources and time. In this paper, we propose a new approach to the CDG problem by formulating the CDG problem as a noisy derivative free optimization (DFO) problem. However, this formulation is complicated by the fact that derivatives of the objective function are unavailable, and the objective function evaluations are corrupted by noise. We solve this noisy optimization problem by utilizing techniques from direct optimization coupled with a robust noise estimator, and by leveraging techniques from inverse problems to estimate the gradient of the noisy objective function. We demonstrate the efficiency and reliability of this new approach through numerical experiments with an abstract model of part of IBM's NorthStar processor, a superscalar in-order processor designed for servers.

Citations (6)

Summary

We haven't generated a summary for this paper yet.