Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Graph Parsing with Recurrent Neural Network DAG Grammars (1910.00051v2)

Published 30 Sep 2019 in cs.CL

Abstract: Semantic parses are directed acyclic graphs (DAGs), so semantic parsing should be modeled as graph prediction. But predicting graphs presents difficult technical challenges, so it is simpler and more common to predict the linearized graphs found in semantic parsing datasets using well-understood sequence models. The cost of this simplicity is that the predicted strings may not be well-formed graphs. We present recurrent neural network DAG grammars, a graph-aware sequence model that ensures only well-formed graphs while sidestepping many difficulties in graph prediction. We test our model on the Parallel Meaning Bank---a multilingual semantic graphbank. Our approach yields competitive results in English and establishes the first results for German, Italian and Dutch.

Citations (21)

Summary

We haven't generated a summary for this paper yet.