Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The sharp Hardy--Moser--Trudinger inequality in dimension $n$ (1909.12587v1)

Published 27 Sep 2019 in math.FA

Abstract: In this paper, we prove a Hardy--Moser--Trudinger inequality in the unit ball $\mathbb Bn$ in $\mathbb Rn$ which improves both the classical singular Moser--Trudinger inequality and the classical Hardy inequality at the same time. More precisely, we show that for any $\beta \in [0,n)$ there exists a constant $C>0$ depending only on $n$ and $\beta$ such that [ \sup_{u\in W{1,n}_0(\mathbb Bn), \mathcal H(u) \leq 1}\int_{\mathbb Bn} e{(1-\frac\beta n)\alpha_n |u|{\frac n{n-1}}} |x|{-\beta} dx \leq C ] where $\alpha_n = n \omega_{n-1}{\frac1{n-1}}$ with $\omega_{n-1}$ being the surface area of the unit sphere $S{n-1} = \partial \mathbb Bn$, and [ \mathcal H(u) = \int_{\mathbb Bn} |\nabla u|n dx -\left(\frac{2(n-1)}n\right)n \int_{\mathbb Bn} \frac{|u|n}{(1-|x|2)n} dx. ] This extends an inequality of Wang and Ye in dimension two to higher dimensions and to the singular case as well. The proof is based on the method of transplantation of Green's functions and without using the blow-up analysis method. As a consequence, we obtain a singular Moser--Trudinger inequality in the hyperbolic spaces which confirms affirmatively a conjecture by Mancini, Sandeep and Tintarev \cite[Conjecture $5.2$]{MST}. We also propose an inequality which extends the singular Hardy--Moser--Trudinger inequality to any bounded convex domain in $\mathbb Rn$ which is analogue of the conjecture of Wang and Ye in higher dimensions.

Summary

We haven't generated a summary for this paper yet.