Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying through Flows for Recovering Latent Representations (1909.12555v4)

Published 27 Sep 2019 in cs.LG and stat.ML

Abstract: Identifiability, or recovery of the true latent representations from which the observed data originates, is de facto a fundamental goal of representation learning. Yet, most deep generative models do not address the question of identifiability, and thus fail to deliver on the promise of the recovery of the true latent sources that generate the observations. Recent work proposed identifiable generative modelling using variational autoencoders (iVAE) with a theory of identifiability. Due to the intractablity of KL divergence between variational approximate posterior and the true posterior, however, iVAE has to maximize the evidence lower bound (ELBO) of the marginal likelihood, leading to suboptimal solutions in both theory and practice. In contrast, we propose an identifiable framework for estimating latent representations using a flow-based model (iFlow). Our approach directly maximizes the marginal likelihood, allowing for theoretical guarantees on identifiability, thereby dispensing with variational approximations. We derive its optimization objective in analytical form, making it possible to train iFlow in an end-to-end manner. Simulations on synthetic data validate the correctness and effectiveness of our proposed method and demonstrate its practical advantages over other existing methods.

Citations (12)

Summary

We haven't generated a summary for this paper yet.