Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
40 tokens/sec
GPT-5 Medium
33 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
105 tokens/sec
DeepSeek R1 via Azure Premium
93 tokens/sec
GPT OSS 120B via Groq Premium
479 tokens/sec
Kimi K2 via Groq Premium
160 tokens/sec
2000 character limit reached

A Radio Signal Modulation Recognition Algorithm Based on Residual Networks and Attention Mechanisms (1909.12472v1)

Published 27 Sep 2019 in eess.SP, cs.CV, and cs.LG

Abstract: To solve the problem of inaccurate recognition of types of communication signal modulation, a RNN neural network recognition algorithm combining residual block network with attention mechanism is proposed. In this method, 10 kinds of communication signals with Gaussian white noise are generated from standard data sets, such as MASK, MPSK, MFSK, OFDM, 16QAM, AM and FM. Based on the original RNN neural network, residual block network is added to solve the problem of gradient disappearance caused by deep network layers. Attention mechanism is added to the network to accelerate the gradient descent. In the experiment, 16QAM, 2FSK and 4FSK are used as actual samples, IQ data frames of signals are used as input, and the RNN neural network combined with residual block network and attention mechanism is trained. The final recognition results show that the average recognition rate of real-time signals is over 93%. The network has high robustness and good use value.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube