Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparison of Artificial Intelligence Techniques for Project Conceptual Cost Prediction (1909.11637v1)

Published 8 Aug 2019 in cs.LG and cs.AI

Abstract: Developing a reliable parametric cost model at the conceptual stage of the project is crucial for projects managers and decision-makers. Existing methods, such as probabilistic and statistical algorithms have been developed for project cost prediction. However, these methods are unable to produce accurate results for conceptual cost prediction due to small and unstable data samples. AI and ML algorithms include numerous models and algorithms for supervised regression applications. Therefore, a comparison analysis for AI models is required to guide practitioners to the appropriate model. The study focuses on investigating twenty AI techniques which are conducted for cost modeling such as fuzzy logic (FL) model, artificial neural networks (ANNs), multiple regression analysis (MRA), case-based reasoning (CBR), hybrid models, and ensemble methods such as scalable boosting trees (XGBoost). Field canals improvement projects (FCIPs) are used as an actual case study to analyze the performance of the applied ML models. Out of 20 AI techniques, the results showed that the most accurate and suitable method is XGBoost with 9.091% and 0.929 based on Mean Absolute Percentage Error (MAPE) and adjusted R2. Nonlinear adaptability, handling missing values and outliers, model interpretation and uncertainty have been discussed for the twenty developed AI models. Keywords: Artificial intelligence, Machine learning, ensemble methods, XGBoost, evolutionary fuzzy rules generation, Conceptual cost, and parametric cost model.

Citations (61)

Summary

We haven't generated a summary for this paper yet.