Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic collocation method for computing eigenspaces of parameter-dependent operators (1909.11608v2)

Published 25 Sep 2019 in math.NA and cs.NA

Abstract: We consider computing eigenspaces of an elliptic self-adjoint operator depending on a countable number of parameters in an affine fashion. The eigenspaces of interest are assumed to be isolated in the sense that the corresponding eigenvalues are separated from the rest of the spectrum for all values of the parameters. We show that such eigenspaces can in fact be extended to complex-analytic functions of the parameters and quantify this analytic dependence in way that leads to convergence of sparse polynomial approximations. A stochastic collocation method on an anisoptropic sparse grid in the parameter domain is proposed for computing a basis for the eigenspace of interest. The convergence of this method is verified in a series of numerical examples based on the eigenvalue problem of a stochastic diffusion operator.

Citations (7)

Summary

We haven't generated a summary for this paper yet.