Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Traffic Scene Predictions with Generative Adversarial Networks (1909.10833v1)

Published 24 Sep 2019 in cs.CV

Abstract: We present a new two-stage pipeline for predicting frames of traffic scenes where relevant objects can still reliably be detected. Using a recent video prediction network, we first generate a sequence of future frames based on past frames. A second network then enhances these frames in order to make them appear more realistic. This ensures the quality of the predicted frames to be sufficient to enable accurate detection of objects, which is especially important for autonomously driving cars. To verify this two-stage approach, we conducted experiments on the Cityscapes dataset. For enhancing, we trained two image-to-image translation methods based on generative adversarial networks, one for blind motion deblurring and one for image super-resolution. All resulting predictions were quantitatively evaluated using both traditional metrics and a state-of-the-art object detection network showing that the enhanced frames appear qualitatively improved. While the traditional image comparison metrics, i.e., MSE, PSNR, and SSIM, failed to confirm this visual impression, the object detection evaluation resembles it well. The best performing prediction-enhancement pipeline is able to increase the average precision values for detecting cars by about 9% for each prediction step, compared to the non-enhanced predictions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.