Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
136 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Unveiling the relation between herding and liquidity with trader lead-lag networks (1909.10807v2)

Published 24 Sep 2019 in q-fin.TR and q-fin.ST

Abstract: We propose a method to infer lead-lag networks of traders from the observation of their trade record as well as to reconstruct their state of supply and demand when they do not trade. The method relies on the Kinetic Ising model to describe how information propagates among traders, assigning a positive or negative "opinion" to all agents about whether the traded asset price will go up or down. This opinion is reflected by their trading behavior, but whenever the trader is not active in a given time window, a missing value will arise. Using a recently developed inference algorithm, we are able to reconstruct a lead-lag network and to estimate the unobserved opinions, giving a clearer picture about the state of supply and demand in the market at all times. We apply our method to a dataset of clients of a major dealer in the Foreign Exchange market at the 5 minutes time scale. We identify leading players in the market and define a herding measure based on the observed and inferred opinions. We show the causal link between herding and liquidity in the inter-dealer market used by dealers to rebalance their inventories.

Summary

We haven't generated a summary for this paper yet.