Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Need for Large Quantum Depth (1909.10303v2)

Published 23 Sep 2019 in quant-ph and cs.CC

Abstract: Near-term quantum computers are likely to have small depths due to short coherence time and noisy gates, and thus a potential way to use these quantum devices is using a hybrid scheme that interleaves them with classical computers. For example, the quantum Fourier transform can be implemented by a hybrid of logarithmic-depth quantum circuits and a classical polynomial-time algorithm. Along the line, it seems possible that a general quantum computer may only be polynomially faster than a hybrid quantum-classical computer. Jozsa raised the question of whether $BQP = BPP{BQNC}$ and conjectured that they are equal, where $BQNC$ means $polylog$-depth quantum circuits. Nevertheless, Aaronson conjectured an oracle separation for these two classes and gave a candidate. In this work, we prove Aaronson's conjecture for a different but related oracle problem. Our result also proves that Jozsa's conjecture fails relative to an oracle.

Citations (34)

Summary

We haven't generated a summary for this paper yet.