Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient estimation of the modified Gromov-Hausdorff distance between unweighted graphs (1909.09772v9)

Published 21 Sep 2019 in cs.CG, math.GT, and math.MG

Abstract: Gromov-Hausdorff distances measure shape difference between the objects representable as compact metric spaces, e.g. point clouds, manifolds, or graphs. Computing any Gromov-Hausdorff distance is equivalent to solving an NP-Hard optimization problem, deeming the notion impractical for applications. In this paper we propose polynomial algorithm for estimating the so-called modified Gromov-Hausdorff (mGH) distance, whose topological equivalence with the standard Gromov-Hausdorff (GH) distance was established in M\'emoli F, 2012. We implement the algorithm for the case of compact metric spaces induced by unweighted graphs as part of Python library $\verb|scikit-tda|$, and demonstrate its performance on real-world and synthetic networks. The algorithm finds the mGH distances exactly on most graphs with the scale-free property. We use the computed mGH distances to successfully detect outliers in real-world social and computer networks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.