Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty Quantification in Stochastic Economic Dispatch using Gaussian Process Emulation (1909.09266v1)

Published 20 Sep 2019 in eess.SY, cs.SY, and stat.CO

Abstract: The increasing penetration of renewable energy resources in power systems, represented as random processes, converts the traditional deterministic economic dispatch problem into a stochastic one. To solve this stochastic economic dispatch, the conventional Monte Carlo method is prohibitively time consuming for medium- and large-scale power systems. To overcome this problem, we propose in this paper a novel Gaussian-process-emulator-based approach to quantify the uncertainty in the stochastic economic dispatch considering wind power penetration. Based on the dimension-reduction results obtained by the Karhunen-Lo`eve expansion, a Gaussian-process emulator is constructed. This surrogate allows us to evaluate the economic dispatch solver at sampled values with a negligible computational cost while maintaining a desirable accuracy. Simulation results conducted on the IEEE 118-bus system reveal that the proposed method has an excellent performance as compared to the traditional Monte Carlo method.

Citations (7)

Summary

We haven't generated a summary for this paper yet.