Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emotion Filtering at the Edge (1909.08500v1)

Published 18 Sep 2019 in eess.AS, cs.CR, cs.HC, and cs.SD

Abstract: Voice controlled devices and services have become very popular in the consumer IoT. Cloud-based speech analysis services extract information from voice inputs using speech recognition techniques. Services providers can thus build very accurate profiles of users' demographic categories, personal preferences, emotional states, etc., and may therefore significantly compromise their privacy. To address this problem, we have developed a privacy-preserving intermediate layer between users and cloud services to sanitize voice input directly at edge devices. We use CycleGAN-based speech conversion to remove sensitive information from raw voice input signals before regenerating neutralized signals for forwarding. We implement and evaluate our emotion filtering approach using a relatively cheap Raspberry Pi 4, and show that performance accuracy is not compromised at the edge. In fact, signals generated at the edge differ only slightly (~0.16%) from cloud-based approaches for speech recognition. Experimental evaluation of generated signals show that identification of the emotional state of a speaker can be reduced by ~91%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ranya Aloufi (11 papers)
  2. Hamed Haddadi (131 papers)
  3. David Boyle (25 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.