Natural maps for measurable cocycles of compact hyperbolic manifolds (1909.07712v2)
Abstract: Let $\text{G}(n)$ be equal either to $\text{PO}(n,1),\text{PU}(n,1)$ or $\text{PSp}(n,1)$ and let $\Gamma \leq \text{G}(n)$ be a uniform lattice. Denote by $\mathbb{H}n_K$ the hyperbolic space associated to $\text{G}(n)$, where $K$ is a division algebra over the reals of dimension $d=\dim_{\mathbb{R}} K$. Assume $d(n-1) \geq 2$. In this paper we generalize natural maps to measurable cocycles. Given a standard Borel probability $\Gamma$-space $(X,\mu_X)$, we assume that a measurable cocycle $\sigma:\Gamma \times X \rightarrow \text{G}(m)$ admits an essentially unique boundary map $\phi:\partial_\infty \mathbb{H}n_K \times X \rightarrow \partial_\infty \mathbb{H}m_K$ whose slices $\phi_x:\mathbb{H}n_K \rightarrow \mathbb{H}m_K$ are atomless for almost every $x \in X$. Then, there exists a $\sigma$-equivariant measurable map $F: \mathbb{H}n_K \times X \rightarrow \mathbb{H}m_K$ whose slices $F_x:\mathbb{H}n_K \rightarrow \mathbb{H}m_K$ are differentiable for almost every $x \in X$ and such that $\text{Jac}_a F_x \leq 1$ for every $a \in \mathbb{H}n_K$ and almost every $x \in X$. The previous properties allow us to define the natural volume $\text{NV}(\sigma)$ of the cocycle $\sigma$. This number satisfies the inequality $\text{NV}(\sigma) \leq \text{Vol}(\Gamma \backslash \mathbb{H}n_K)$. Additionally, the equality holds if and only if $\sigma$ is cohomologous to the cocycle induced by the standard lattice embedding $i:\Gamma \rightarrow \text{G}(n) \leq \text{G}(m)$, modulo possibly a compact subgroup of $\text{G}(m)$ when $m>n$. Given a continuous map $f:M \rightarrow N$ between compact hyperbolic manifolds, we also obtain an adaptation of the mapping degree theorem to this context.